

Page: 1 of 7

Sample: 03-05-2025-60434

Report Created: 03/17/2025; Expires: 03/17/2026

Sample Received:03/05/2025;

Half Hill Farm Inc

110 West High St. Woodbury, TN 37190 halfhillfarm@gmail.com 615-469-7778

2500

Batch:CBD022625025 Concentrate & Extracts

> TENNESSEE COMPLIANCE RESULT PASS

TN-CANNABINOIDS	TN-MICROBIALS	TN-MYCOTOXINS	TN-RESIDUAL SOLVENTS
PASS	PASS	PASS	PASS
TN-PESTICIDES PASS	TN-HEAVY METALS PASS		

Compliance Result* PASS 0.115 %	0.128 % Δ-9 THC
ND % THCA	0.128 % Total THC

alyte	LOD	LOQ	MU	Mass	Mass
	%	%	%	%	mg/g
Δ-8-Tetrahydrocannabinol (Δ-8 THC)	0.0101	0.0151	0.000	0.042	0.416
Total THC (THCa * 0.877 + Δ9-THC)	0.0019	0.0151	0.013	0.128	1.280
Δ -9-Tetrahydrocannabinol (Δ -9 THC)	0.0101	0.0151	0.013	0.128	1.280
Δ-9-Tetrahydrocannabinolic Acid (THCA-A)	0.0101	0.0151	N/A	ND	ND
Δ-9-Tetrahydrocannabiphorol (Δ-9 THCP)	0.0101	0.0151	N/A	ND	ND
Δ -9-Tetrahydrocannabivarin (Δ -9 THCV)	0.0101	0.0151	N/A	ND	ND
R-Δ-10-Tetrahydrocannabinol (R-Δ-10-THC)	0.0101	0.0151	N/A	ND	ND
S-Δ-10-Tetrahydrocannabinol (S-Δ-10-THC)	0.0101	0.0151	N/A	ND	ND
9R-Hexahydrocannabinol (9R-HHC)	0.0101	0. <mark>01</mark> 51	N/A	ND	ND
9S-Hexahydrocannabinol (9S-HHC)	0.0101	0.0151	N/A	ND	ND
Total				0.170	1.696

* Compliance Result Adjusted for Measurement of Uncertainty

New Bloom Labs 6121 Heritage Park Drive, A500 Chattanooga, TN 37416 (844) 837-8223 TN DEA#: RN0563975 ANAB Testing Laboratory (AT-2868): ISO/IEC 17025:2017

ashlug N Phillips

Ashley N. Phillips, M. Sc Laboratory Director Powered by reLIMS info@relims.com

Page: 2 of 7

New Bloom Labs 6121 Heritage Park Drive, A500 Chattanooga, TN 37416 (844) 837-8223 TN DEA#: RN0563975 ANAB Testing Laboratory (AT-2868): ISO/IEC 17025:2017

ashlug N Phillips

Ashley N. Phillips, M. Sc Laboratory Director Powered by reLIMS info@relims.com

Page: 3 of 7

NEW BLOOM LABS

Chattanooga, TN 37416 (844) 837-8223 TN DEA#: RN0563975 ANAB Testing Laboratory (AT-2868): ISO/IEC 17025:2017

ashlug N Phillips

Ashley N. Phillips, M. Sc Laboratory Director

Powered by reLIMS info@relims.com

Page: 4 of 7

odbury, TN 37190 hillfarm@gmail.com				R	eport Created: 03,	/17/2025; Expires: 03/17/2
-469-7778						
n:CBD022625025						ಮತ್ತು ಸ್ಥಾನ ಸ್ವಾಗ್ಗಳ್ ಸ್ಥಾನ
entrate & Extracts						
				1		
			Haling Oli			
			No tan de			
Tannaaaa Daaidwal Calva	nto Com	alianas Danas	A			
Tennessee Residual Solve		pliance Repor	τ			
Testing Method:HS-GC/MS, CON-P-8	8000)					
Date Tested: 03/05/2025						
Analyte	LOD	LOQ	LIMIT	MU	Mass	Status
	PPM	PPM	PPM	PPM	PPM	Pass/Fail
Total Butanes (n-butane, iso-butane)	138.000	460.000	1000.0	N/A	ND	Pass
Total Xylenes (1,2-dimethylbenzene,	60.000	200.000	430.0	N/A	ND	Pass
1,3-dimethylbenzene, 1,4-						
dimethylbenzene, ethylbenzene)	7.500	05.000	(0.0			D
Total Hexanes (n-hexane, 2-	7.500	25.000	60.0	N/A	ND	Pass
methylpentane, 3-methylpentane,						
2,2-dimethylbutane, 2,3-						
dimethylbutane)	169 000	560.000	1000.0	N//A	ND	Dace
dimethylbutane) Fotal Pentanes (n-pentane, iso-	168.000	560.000	1000.0	N/A	ND	Pass
dimethylbutane) Total Pentanes (n-pentane, iso- pentane, neo-pentane)						
dimethylbutane) Total Pentanes (n-pentane, iso- pentane, neo-pentane) n-Heptane	300.000	1000.000	1000.0	N/A	ND	Pass
dimethylbutane) Total Pentanes (n-pentane, iso- pentane, neo-pentane) n-Heptane 2-Propanol (IPA)	300.000 150.000	1000.000 500.000	1000.0 1000.0	N/A N/A	ND ND	Pass Pass
dimethylbutane) Fotal Pentanes (n-pentane, iso- pentane, neo-pentane) n-Heptane 2-Propanol (IPA) Acetone	300.000 150.000 75.000	1000.000 500.000 250.000	1000.0 1000.0 1000.0	N/A N/A N/A	ND ND ND	Pass Pass Pass
dimethylbutane) Total Pentanes (n-pentane, iso- pentane, neo-pentane) n-Heptane 2-Propanol (IPA) Acetone Benzene	300.000 150.000 75.000 0.300	1000.000 500.000 250.000 1.000	1000.0 1000.0 1000.0 2.0	N/A N/A N/A N/A	ND ND ND ND	Pass Pass Pass Pass Pass
dimethylbutane) Total Pentanes (n-pentane, iso- pentane, neo-pentane) n-Heptane 2-Propanol (IPA) Acetone Benzene Ethanol	300.000 150.000 75.000 0.300 300.000	1000.000 500.000 250.000 1.000 1000.000	1000.0 1000.0 1000.0 2.0 1000.0	N/A N/A N/A N/A N/A	ND ND ND ND ND	Pass Pass Pass Pass Pass Pass
dimethylbutane) Total Pentanes (n-pentane, iso- pentane, neo-pentane) n-Heptane 2-Propanol (IPA) Acetone Benzene Ethanol Ethyl Acetate	300.000 150.000 75.000 0.300 300.000 75.000	1000.000 500.000 250.000 1.000 1000.000 250.000	1000.0 1000.0 2.0 1000.0 1000.0 1000.0	N/A N/A N/A N/A N/A	ND ND ND ND ND ND	Pass Pass Pass Pass Pass Pass Pass
dimethylbutane) Total Pentanes (n-pentane, iso- pentane, neo-pentane) n-Heptane 2-Propanol (IPA) Acetone Benzene Ethanol Ethyl Acetate Methanol	300.000 150.000 75.000 0.300 300.000 75.000 30.000	1000.000 500.000 250.000 1.000 1000.000 250.000 100.000	1000.0 1000.0 1000.0 2.0 1000.0 1000.0 600.0	N/A N/A N/A N/A N/A N/A	ND ND ND ND ND ND ND	Pass Pass Pass Pass Pass Pass Pass Pass
dimethylbutane) Total Pentanes (n-pentane, iso- pentane, neo-pentane) n-Heptane 2-Propanol (IPA) Acetone Benzene Ethanol Ethyl Acetate	300.000 150.000 75.000 0.300 300.000 75.000	1000.000 500.000 250.000 1.000 1000.000 250.000	1000.0 1000.0 2.0 1000.0 1000.0 1000.0	N/A N/A N/A N/A N/A N/A N/A	ND ND ND ND ND ND ND ND ND	Pass Pass Pass Pass Pass Pass Pass
dimethylbutane) Total Pentanes (n-pentane, iso- pentane, neo-pentane) n-Heptane 2-Propanol (IPA) Acetone Benzene Ethanol Ethyl Acetate Methanol Propane	300.000 150.000 75.000 300.000 75.000 30.000 300.000	1000.000 500.000 250.000 1.000 1000.000 250.000 100.000	1000.0 1000.0 2.0 1000.0 1000.0 600.0 1000.0	N/A N/A N/A N/A N/A N/A	ND ND ND ND ND ND ND	Pass Pass Pass Pass Pass Pass Pass Pass
dimethylbutane) Total Pentanes (n-pentane, iso- pentane, neo-pentane) n-Heptane 2-Propanol (IPA) Acetone Benzene Ethanol Ethyl Acetate Methanol Propane	300.000 150.000 75.000 300.000 75.000 30.000 300.000	1000.000 500.000 250.000 1.000 1000.000 250.000 100.000	1000.0 1000.0 2.0 1000.0 1000.0 600.0 1000.0	N/A N/A N/A N/A N/A N/A N/A	ND ND ND ND ND ND ND ND ND	Pass Pass Pass Pass Pass Pass Pass Pass
dimethylbutane) Total Pentanes (n-pentane, iso- pentane, neo-pentane) n-Heptane 2-Propanol (IPA) Acetone Benzene Ethanol Ethyl Acetate Methanol Propane	300.000 150.000 75.000 300.000 75.000 30.000 300.000	1000.000 500.000 250.000 1.000 1000.000 250.000 100.000	1000.0 1000.0 2.0 1000.0 1000.0 600.0 1000.0	N/A N/A N/A N/A N/A N/A N/A	ND ND ND ND ND ND ND ND ND	Pass Pass Pass Pass Pass Pass Pass Pass

New Bloom Labs 6121 Heritage Park Drive, A500 Chattanooga, TN 37416 (844) 837-8223 TN DEA#: RN0563975 ANAB Testing Laboratory (AT-2868): ISO/IEC 17025:2017

ashlug N Phillips

Ashley N. Phillips, M. Sc Laboratory Director Powered by reLIMS info@relims.com

Page: 5 of 7

Half Hill Farm	n Inc									Sampl	e: 03-0	5-2025	-60434
110 West High St.										Campi			
Woodbury, TN 371	90												3/05/2025;
halfhillfarm@gmail.									Report	Created: 0	3/1//2025	; Expires: (03/17/2026
615-469-7778	com												
015 407 7770													
													THE REAL PROPERTY.
2500													日本語の日
atch:CBD0226250	25												122233
Concentrate & Extra	cts												
Tennessee F	Pestici	des Co	mpliar	nce Rep	ort								
(Testing Method:LC)			•	•									
Date Tested: 03/05/													
Analyte	LOD	LOQ	LIMIT	MU	Mass	Status	Analyte	LOD	LOQ	LIMIT	MU	Mass	Status
	PPM	PPM	PPM	PPM	PPM	Pass/Fail		PPM	PPM	PPM	PPM	PPM	Pass/Fail
Acephate	0.050	0.100	0.4	N/A	ND	Pass	Hexythiazox	0.050	0.100	1.0	N/A	ND	Pass
Chlormequat	0.050	0.100	0.2	N/A	ND	Pass	Imazalil	0.050	0.100	0.2	N/A	ND	Pass
chloride							Imidacloprid	0.100	0.200	0.4	N/A	ND	Pass
Spinosad	0.05	0.1	0.2	N/A	ND	Pass	Kresoxim	0.050	0.100	0.4	N/A	ND	Pass
Abamectin	0.05	0.1	0.5	N/A	ND	Pass	Methyl						
Acequinocyl	0.050	0.100	2.0	N/A	ND	Pass	Malathion	0.050	0.100	0.2	N/A	ND	Pass
Acetamiprid	0.050	0.100	0.2	N/A	ND	Pass	Metalaxyl	0.050	0.100	0.2	N/A	ND	Pass
Aldicarb	0.050	0.100	0.4	N/A	ND	Pass	Methiocarb	0.050	0.100	0.2	N/A	ND	Pass
Azoxystrobin	0.050	0.100	0.2	N/A	ND	Pass	Methomyl	0.050	0.100	0.4	N/A	ND	Pass
Bifenazate	0.050	0.100	0.2	N/A	ND	Pass	Myclobutanil	0.050	0.100	0.2	N/A	ND	Pass
Bifenthrin	0.050	0.100	0.2	N/A	ND	Pass	Naled	0.125	0.250	0.5	N/A	ND	Pass
Boscalid	0.050	0.100	0.4	N/A	ND	Pass	Oxamyl	0.250	0.500	1.0	N/A	ND	Pass
Carbaryl	0.050	0.100	0.2	N/A	ND	Pass	Paclobutrazole	0.050	0.100	0.4	N/A	ND	Pass
Carbofuran	0.050	0.100	0.2	N/A	ND	Pass	Parathion	0.050	0.100	0.2	N/A	ND	Pass
Chlorantraniliprole	0.050	0.100	0.2	N/A	ND	Pass	Methyl	_					
Chlorfenapyr	0.050	0.100	1.0	N/A	ND	Pass	Permethrins	0.050	0.100	0.2	N/A	ND	Pass
Chlorpyrifos	0.050	0.100	0.2	N/A	ND	Pass	Phosmet	0.050	0.100	0.2	N/A	ND	Pass
Clofentazine	0.050	0.100	0.2	N/A	ND	Pass	Piperonyl	0.050	1.000	2.0	N/A	ND	Pass
Cyfluthrin	0.250	0.500	1.0	N/A	ND	Pass	Butoxide	0.050	0.400	0.0		NID	
Cypermethrin	0.250	0.500	1.0	N/A	ND	Pass	Prallethrin	0.050	0.100	0.2	N/A	ND	Pass
Diazinon Dichlorvos (DDPV)	0.050 0.025	0.100	0.2 0.1	N/A N/A	ND ND	Pass Pass	Propiconazole Propoxur	0.050 0.050	0.100	0.4 0.2	N/A N/A	ND ND	Pass Pass
Dimethoate	0.025	0.050	0.1	N/A	ND	Pass	Propoxur Pyrethrins	0.050	0.100	1.0	N/A	ND	Pass
Ethoprophos	0.050	0.100	0.2	N/A	ND	Pass	Pyridaben	0.250	0.300	0.2	N/A	ND	Pass
Etofenprox	0.050	0.100	0.2	N/A	ND	Pass	Spiromesifen	0.050	0.100	0.2	N/A	ND	Pass
Etoxazole	0.050	0.100	0.4	N/A	ND	Pass	Spirotetramat	0.050	0.100	0.2	N/A	ND	Pass
Fenoxycarb	0.050	0.100	0.2	N/A	ND	Pass	Spiroxamine	0.050	0.100	0.4	N/A	ND	Pass
Fenpyroximate	0.050	0.100	0.2	N/A	ND	Pass	Tebuconazole	0.050	0.100	0.4	N/A	ND	Pass
Fipronil	0.050	0.100	0.4 0.4	N/A	ND	Pass	Thiacloprid	0.050	0.100	0.2	N/A	ND	Pass
Flonicamid	0.050	0.100	1.0	N/A	ND	Pass	Thiamethoxam	0.050	0.100	0.2	N/A	ND	Pass
Fludioxonil	0.050	0.100	0.4	N/A	ND	Pass	Trifloxystrobin	0.050	0.100	0.2	N/A	ND	Pass
							Daminozide	0.500	1.000	1.0	N/A	ND	Pass

Ashley N. Phillips Ashley N. Phillips, M. Sc Laboratory Director

Powered by reLIMS info@relims.com

All analyses were conducted at 6121 Heritage Park Dr, Suite A500 Chattanooga, TN 37416. Results published on this certificate relate only to the items tested. Items are tested as received. New Bloom Labs makes no claims as to the efficacy, safety, or other risks associated with any detected or non-detected level of any compounds reported herein. This Certificate shall not be reproduced except in full, without the written approval of New Bloom Labs.

New Bloom Labs

17025:2017

NEW BLOOM LABS

6121 Heritage Park Drive, A500

ANAB Testing Laboratory (AT-2868): ISO/IEC

Chattanooga, TN 37416 (844) 837-8223

TN DEA#: RN0563975

Page: 6 of 7

alf Hill Farm Ir 0 West High St. oodbury, TN 37190 Ifhillfarm@gmail.con 5-469-7778						Report	Sam	3-05-2025-604 ple Received:03/05/20 2025; Expires: 03/17/20
00								
ch:CBD022625025 centrate & Extracts								
		Area BOASA CHIM						
		A TAK-TAK-TAK-TAK-						
		Herry OI						
		-						
	Tennessee Hea	avy Metals Co	ompliance	Report				
	(Method of Analysis:			Report				
	Date Tested: 03/06/2	025						
	Analyte	LOD	LOQ	LIMIT	MU	Mass	Status	
	Analyte	LOD PPM	LOQ PPM		MU PPM	Mass PPM	Status Pass/Fail	
	Analyte Arsenic							
	Arsenic Cadmium	PPM 0.05 0.05	PPM 0.0945 0.0945	PPM 0.4 0.4	PPM N/A N/A	PPM ND ND	Pass/Fail Pass Pass	
	Arsenic Cadmium Lead	PPM 0.05 0.05 0.05	PPM 0.0945 0.0945 0.0945	PPM 0.4 0.4 1.0	PPM N/A N/A N/A	PPM ND ND ND	Pass/Fail Pass Pass Pass	
	Arsenic Cadmium	PPM 0.05 0.05	PPM 0.0945 0.0945	PPM 0.4 0.4	PPM N/A N/A	PPM ND ND	Pass/Fail Pass Pass	
	Arsenic Cadmium Lead	PPM 0.05 0.05 0.05	PPM 0.0945 0.0945 0.0945	PPM 0.4 0.4 1.0	PPM N/A N/A N/A	PPM ND ND ND	Pass/Fail Pass Pass Pass	
	Arsenic Cadmium Lead	PPM 0.05 0.05 0.05	PPM 0.0945 0.0945 0.0945	PPM 0.4 0.4 1.0	PPM N/A N/A N/A	PPM ND ND ND	Pass/Fail Pass Pass Pass	
	Arsenic Cadmium Lead	PPM 0.05 0.05 0.05	PPM 0.0945 0.0945 0.0945	PPM 0.4 0.4 1.0	PPM N/A N/A N/A	PPM ND ND ND	Pass/Fail Pass Pass Pass	
	Arsenic Cadmium Lead Mercury	PPM 0.05 0.05 0.05 0.05	PPM 0.0945 0.0945 0.0945 0.0945	PPM 0.4 0.4 1.0 1.2	PPM N/A N/A N/A	PPM ND ND ND	Pass/Fail Pass Pass Pass	
	Arsenic Cadmium Lead Mercury	PPM 0.05 0.05 0.05 0.05	PPM 0.0945 0.0945 0.0945 0.0945	PPM 0.4 0.4 1.0 1.2	PPM N/A N/A N/A	PPM ND ND ND	Pass/Fail Pass Pass Pass	
	Arsenic Cadmium Lead Mercury	PPM 0.05 0.05 0.05 0.05	PPM 0.0945 0.0945 0.0945 0.0945	PPM 0.4 0.4 1.0 1.2	PPM N/A N/A N/A	PPM ND ND ND	Pass/Fail Pass Pass Pass	
	Arsenic Cadmium Lead Mercury	PPM 0.05 0.05 0.05 0.05	PPM 0.0945 0.0945 0.0945 0.0945	PPM 0.4 0.4 1.0 1.2	PPM N/A N/A N/A	PPM ND ND ND	Pass/Fail Pass Pass Pass	
	Arsenic Cadmium Lead Mercury	PPM 0.05 0.05 0.05 0.05	PPM 0.0945 0.0945 0.0945 0.0945	PPM 0.4 0.4 1.0 1.2	PPM N/A N/A N/A	PPM ND ND ND	Pass/Fail Pass Pass Pass	
	Arsenic Cadmium Lead Mercury	PPM 0.05 0.05 0.05 0.05	PPM 0.0945 0.0945 0.0945 0.0945	PPM 0.4 0.4 1.0 1.2	PPM N/A N/A N/A	PPM ND ND ND	Pass/Fail Pass Pass Pass	
	Arsenic Cadmium Lead Mercury	PPM 0.05 0.05 0.05 0.05	PPM 0.0945 0.0945 0.0945 0.0945	PPM 0.4 0.4 1.0 1.2	PPM N/A N/A N/A	PPM ND ND ND	Pass/Fail Pass Pass Pass	
	Arsenic Cadmium Lead Mercury	PPM 0.05 0.05 0.05 0.05	PPM 0.0945 0.0945 0.0945 0.0945	PPM 0.4 0.4 1.0 1.2	PPM N/A N/A N/A	PPM ND ND ND	Pass/Fail Pass Pass Pass	
	Arsenic Cadmium Lead Mercury	PPM 0.05 0.05 0.05 0.05	PPM 0.0945 0.0945 0.0945 0.0945	PPM 0.4 0.4 1.0 1.2	PPM N/A N/A N/A	PPM ND ND ND	Pass/Fail Pass Pass Pass	

New Bloom Labs 6121 Heritage Park Drive, A500 Chattanooga, TN 37416 (844) 837-8223 TN DEA#: RN0563975 ANAB Testing Laboratory (AT-2868): ISO/IEC 17025:2017

ashlug N Phillips

Ashley N. Phillips, M. Sc Laboratory Director Powered by reLIMS info@relims.com

Page: 7 of 7

LOD	LOQ				
	LOU	MU	Mass	Mass	
%	%	%	%	mg/g	
0.0019	0.0028	0.174	17/50		
0.0101	0.0151	N/A	ND	ND	
0.0101	0.0151	N/A	ND	ND	
0.0101	0.0151	0.000	0.043	0.428	
0.0101	0.0151	N/A	ND	ND	
0.0101	0.0151	0.002	0.382	3.821	
0.0101	0.0151	N/A	ND	ND	
				IND _	
	0.0101 0.0101 0.0101 0.0101	0.0101 0.0151 0.0101 0.0151 0.0101 0.0151 0.0101 0.0151 0.0101 0.0151 0.0101 0.0151 0.0101 0.0151 0.0101 0.0151 0.0101 0.0151 0.0101 0.0151 0.0101 0.0151 0.0101 0.0151 0.0101 0.0151 0.0101 0.0151 0.0101 0.0151	0.0101 0.0151 N/A 0.0101 0.0151 0.000 0.0101 0.0151 N/A 0.0101 0.0151 0.174 0.0101 0.0151 N/A 0.0101 0.0151 0.000 0.0101 0.0151 0.002	0.0101 0.0151 N/A ND 0.0101 0.0151 0.000 0.047 0.0101 0.0151 N/A ND 0.0101 0.0151 0.174 17.450 0.0101 0.0151 N/A ND 0.0101 0.0151 0.002 0.382	0.0101 0.0151 N/A ND ND 0.0101 0.0151 0.000 0.047 0.474 0.017 0.0101 0.0151 N/A ND ND ND 0.0101 0.0151 0.174 17.450 174.495 174.495 0.0101 0.0151 N/A ND ND ND 0.0101 0.0151 N/A ND ND ND ND 0.0101 0.0151 N/A ND 0.0101<

New Bloom Labs 6121 Heritage Park Drive, A500 Chattanooga, TN 37416 (844) 837-8223 TN DEA#: RN0563975 ANAB Testing Laboratory (AT-2868): ISO/IEC 17025:2017

ashley N Phillips

Ashley N. Phillips, M. Sc Laboratory Director Powered by reLIMS info@relims.com